Non-orientable Slice Surfaces and Inscribed Rectangles
نویسندگان
چکیده
We discuss differences between genera of smooth and locally-flat non-orientable surfaces in the 4-ball with boundary a given torus knot or 2-bridge knot. In particular, we establish that result by Batson on 4-genus knots does not hold category. further show certain families are an embedded Mobius band other 4-manifolds. Our investigation is motivated our approach to unify proof existence inscribed squares rectangles aspect ratio $\sqrt3$ Jordan curves regularity condition. This generalizes Hugelmeyer for curves.
منابع مشابه
Immersions of Non-orientable Surfaces
Let F be a closed non-orientable surface. We classify all finite order invariants of immersions of F into R, with values in any Abelian group. We show they are all functions of the universal order 1 invariant that we construct as T ⊕ P ⊕Q where T is a Z valued invariant reflecting the number of triple points of the immersion, and P,Q are Z/2 valued invariants characterized by the property that ...
متن کاملLargest inscribed rectangles in convex polygons
We consider approximation algorithms for the problem of computing an inscribed rectangle having largest area in a convex polygon on n vertices. If the order of the vertices of the polygon is given, we present a randomized algorithm that computes an inscribed rectangle with area at least (1− ) times the optimum with probability t in time O( 1 log n) for any constant t < 1. We further give a dete...
متن کاملFinding Non-Orientable Surfaces in 3-Manifolds
We investigate the complexity of finding an embedded non-orientable surface of Euler genus g in a triangulated 3-manifold. This problem occurs both as a natural question in low-dimensional topology, and as a first non-trivial instance of embeddability of complexes into 3-manifolds. We prove that the problem is NP-hard, thus adding to the relatively few hardness results that are currently known ...
متن کاملNon-orientable Surfaces in Homology Cobordisms
We investigate constraints on embeddings of a non-orientable surface in a 4-manifold with the homology of M × I, where M is a rational homology 3-sphere. The constraints take the form of inequalities involving the genus and normal Euler class of the surface, and either the Ozsváth– Sazbó d-invariants [38] or Atiyah–Singer ρ-invariants [1] of M . One consequence is that the minimal genus of a sm...
متن کاملCurve Complexes of Non-orientable Surfaces
We explore non-orientable surfaces and their associated curve complexes. Studying the combinatorics modeled by the curve complex of a surface helps elucidate the algebraic properties of the mapping class group of the surface. We begin by studying geometric properties of the curve complexes of non-orientable surfaces and the geometric properties of natural sub-complexes of the curve complex. Fin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annali della Scuola normale superiore di Pisa. Classe di scienze
سال: 2022
ISSN: ['0391-173X', '2036-2145']
DOI: https://doi.org/10.2422/2036-2145.202105_099